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On the Suitability of Different Representations of Solid Catalysts for
Combinatorial Library Design by Genetic Algorithms

Oliver C. Gobin* and Ferdi Schüth

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, Germany

ReceiVed March 17, 2008

Genetic algorithms are widely used to solve and optimize combinatorial problems and are more often applied
for library design in combinatorial chemistry. Because of their flexibility, however, their implementation
can be challenging. In this study, the influence of the representation of solid catalysts on the performance
of genetic algorithms was systematically investigated on the basis of a new, constrained, multiobjective,
combinatorial test problem with properties common to problems in combinatorial materials science. Constraints
were satisfied by penalty functions, repair algorithms, or special representations. The tests were performed
using three state-of-the-art evolutionary multiobjective algorithms by performing 100 optimization runs for
each algorithm and test case. Experimental data obtained during the optimization of a noble metal-free
solid catalyst system active in the selective catalytic reduction of nitric oxide with propene was used to
build up a predictive model to validate the results of the theoretical test problem. A significant influence of
the representation on the optimization performance was observed. Binary encodings were found to be the
preferred encoding in most of the cases, and depending on the experimental test unit, repair algorithms or
penalty functions performed best.

1. Introduction

Genetic algorithms or similar evolutionary methods are
increasingly becoming accepted problem solving tools in
applied science.1 Since 1990, the number of publications
significantly increased, and the gap between computer and
applied science diminishes more and more. In chemistry, the
tutorials by Lucasius and Kateman2,3 and Hibbert4 had a
significant impact in boosting applications, and they provide
a good starting point to understand how these algorithms
work. High-throughput experimentation techniques for the
synthesis and screening of new compounds, such as drugs,5

molecular catalysts,6 or solid catalytic materials7-11 were
developed in the 1990s and made the application of genetic
algorithms possible and desirable.12,13 In the field of
heterogeneous catalysis, Wolf et al.14 were the first to use a
genetic algorithm for the generation and optimization of
combinatorial libraries of solid catalysts. Since then, sub-
stantial efforts were invested in improvement of the perfor-
mance of genetic algorithms in this domain, as demonstrated,
for instance, in studies on the influence of the genetic
algorithm parameters, such as elitism, variation, or selection
operators,15-17 population size,17,18 or on advanced algo-
rithms that incorporate neural networks as search heuristic
during the evolution.19-21 However, up to now, no systematic
study on the influence of the representation of solid catalysts
on the performance was carried out. The representation of
catalysts, that is, the mapping between the real catalyst
formulation and the codified representation, directly influ-
ences the search itself, as the genetic algorithm only operates
on the codified individuals. Figure 1 illustrates the different

spaces and their relationship. Two mappings are required to
obtain the fitness of each individual, and each mapping
involves a change in the dimensionality and in the shape of
the corresponding space. The mapping between the decision
space X, that is, the real catalysts, and the objective space
Y is problem dependent and can not directly be modified.
In contrast, the mapping between the individual space I and
the decision space is affected by the chosen representation.
Therefore, a possible way to improve a genetic algorithm is
to understand how the representation influences the search
to design the best possible representation for the correspond-
ing problem.

In this work, several encodings in combination with
adequate variation operators and constraint handling tech-
niques were systematically tested on the basis of a new
multiobjective theoretical combinatorial test problem and
validated by using a model of an experimental test problem,
the so-called “deNOx problem”.22 We chose a multiobjective
approach to test the ability not only to find the best catalyst
formulation but also to find multiple best catalysts with
respect to several goals. Such an approach does not only
give information on the convergence of the algorithm toward
the best set of catalysts but also intrinsically provides
information on the ability of the representation to keep a
diverse set of best catalysts and therefore to find various
catalysts. In the study of this problem, several questions are
encountered, including: Are binary or real valued representa-
tions more adequate for encoding of the catalyst composi-
tion? In the case of a binary vector representation, are
compact encodings with fewer bits always better than
encodings with more bits? Does a reduction of the decision
space by chemical knowledge improve the performance?* To whom correspondence should be addressed. E-mail: og@ogobin.org.
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What is the best way to handle constraints in the case of an
experimental optimization problem? Is it necessary to encode
the existence of an element in addition to its chemical
composition? We will try to address these and related
questions in the following treatment of the problem.

The paper is structured in the following way: First, a very
brief introduction to genetic algorithms and multiobjective
optimization is given. The optimization framework, that is,
the software for automation and performance assessment of
the optimization process, is described and afterward a detailed
specification of the test functions and of the test cases is
given. In the last part, we discuss the results and on their
basis give some general guidelines on the most suitable
representation of solid catalysts.

2. Methods

2.1. Genetic Algorithms for Multiobjective Optimiza-
tion. Genetic algorithms are stochastic global search methods
based on evolutionary principles. They include heuristic
strategies for searching for new and improved solutions in
an intelligent way. Interactions among design variables or
components are intrinsically considered. Several potential
solutions, a population, are evolved in parallel, and the
solutions undergo recombination, mutation, and selection
steps during each iteration. One iteration loop is called a
generation. After a certain number of generations, the
algorithm converges, and ideally, it finds the globally optimal
solution.

Especially real world problems often involve the simul-
taneous optimization of several, and often competing, objec-
tives. In the case of only one objective the solution is clearly
defined, and only one possible solution exists. In contrast,
in the case of multiobjective optimization the situation is
completely different because two solutions that optimize the
various objectives in different ways and are therefore both
“optimal” may be different from each other. Usually a set
of optimal tradeoff surfaces composed of the optimal
solutions with respect to all objectives, the so-called Pareto-
optimal front, is obtained. It also includes the single objective
optima. Pareto-optimality generally uses the concept of
domination to decide which solutions are better than others
with respect to all objectives. More precisely, a solution
dominates another solution if it is not worse for all objectives

and better for at least one objective. The so-called nondomi-
nated solutions, the solutions that are not dominated by any
other solution, form the Pareto-optimal set.

A multiobjective optimization problem can be defined as
finding a vector of decision variables, x ) (x1, x1,..., xm) ∈
X, in the feasible region of the decision space X that
optimizes a vector function f:Xf Y by assigning the quality
of a specific solution x to a vector of objective variables y
) (y1, y1,..., yn) ∈ Y in the multidimensional objective
space Y.

2.2. Optimization Framework. The optimization frame-
work was built on the basis of the platform and programming
language independent interface for search algorithms
(PISA).23 The selector modules, the nondominated sorting
genetic algorithm (NSGA-II),24 the strength Pareto evolu-
tionary algorithm (SPEA2),25 and the indicator based evo-
lutionary algorithm (IBEA)26 as implemented in PISA were
used as multiobjective optimization algorithms. NSGA-II and
SPEA2 are so-called Pareto-based algorithms, which operate
toward two goals: to minimize the distance toward the Pareto-
optimal set and to maximize the diversity within the Pareto-
optimal set to identify the complete set. This is achieved in
both algorithms by using a combination of specific tech-
niques, in particular Pareto-based ranking of the individuals,
and refinement by additional density information in the
objective space. These optimization goals are generally
denoted as preference information. This preference informa-
tion, however, is implemented in a different way depending
on the specific algorithm. In contrast IBEA uses a novel
strategy and is able to adapt to arbitrary preference informa-
tion by using quality indicators, which incorporate the
preference information. In subsection 2.5, two quality
indicators will be described more in detail. Elitism is
implemented in all three algorithms using an additional
population, the so-called “external” or “archive” population.
NSGA-II assesses the fitness of an individual based on the
number of other individuals that dominate it, and diversity
is preserved by a crowing distance algorithm. SPEA2 uses
a similar fitness assessment based on the number of individu-
als that are dominated by or equal to a certain individual
divided by the total population size plus one. Mating is
performed using the individuals of both archive and regular
populations. The diversity along the Pareto-optimal front is

Figure 1. Schematic representation of the individual, decision, and objective space and their relationship (adapted from Zitzler42).
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preserved through a density estimation technique that uses
a k-nearest neighbor clustering algorithm Selection of
individuals for mating was performed by binary tournament
selection. As already mentioned above, IBEA uses quality
indicators that incorporate both convergence and diversity
information, and thus no additional density estimation
technique is needed. An ε-indicator was used for fitness
assignment, and the IBEA parameters κ and F were set to
0.05 and 1.1, respectively. For detailed descriptions of the
optimization algorithms, we refer to the original publications.

The variator module, which incorporates the problem
specific knowledge, was implemented in Matlab as described
in Gobin et al.22,27 The population size was set to 24 for all
test cases to have comparable results with our previous study.
The archive population of the selector module was set to
the same size. In the case of a binary vector codification, a
bit-flip mutation operator (M) and a one-point recombination
operator (1X) were used. Real valued elements were mutated
by polynomial mutation (PM)28 with a distribution index of
η ) 20 and recombined using the symmetric simulated binary
crossover operator (SBX)29 with a distribution index of η )
15. For mutation, a probability of the inverse of the vector
length was used, and for recombination, a probability of 1
was used. Automation and performance assessment30 of the
optimization process was achieved by using the Monitor
module.31 Random numbers for the variator module were
obtained by Random.org,32 which offers true random num-
bers generated from atmospheric noise. To obtain statistically
relevant data, each optimization run was repeated 100 times
with different random seeds and initial populations.

The parameters of the Variator module were held constant,
as a variation of these parameters did not lead to new insights
with respect to the problem of representation. Studies on the
influence of these parameters and on the use of dynamic
probabilities to control the diversity in the population were
recently performed for single-objective problems.15,16,33 The
situation of parameter settings is, however, different in the
case of multiobjective optimization. It is mandatory for
multiobjective optimizers to keep the diversity high because
only a high diversity in the population leads to the discovery
of the complete Pareto-optimal front. Therefore special
operators or algorithms are usually implemented in addition
to the crossover and mutation operators. We have chosen
reasonable parameter settings and operator choices that are
well-known and commonly used for multiobjective problems.
The binary one-point crossover operator and the binary
mutation operator are the classic way to implement these
two variation operators. In the case of real valued representa-
tions, many implementations exist. The SBX operator and
the polynomial mutation operator are well-established, are
known to work together, and were successfully used in many
optimization problems with similar parameter settings.28

2.3. Theoretical Test Problem. To simulate properties
common to solid catalysts, a new combinatorial problem was
designed. It is based on the definition of multiobjective test
problems by Deb et al.,34 which are easy to construct,
scalable to any number of decision variables or objectives,
and the shape and location of the true Pareto-optimal front
is exactly known. Two modified versions of the continuous

test problems DTLZ-1 and DTLZ-2 were used to design the
new combinatorial problem. In the case of two objective
functions, f1 and f2, and n decision variables xi, the modified
DTLZ-1 problem was defined as

minimize f1
DTLZ1(x)) xM(1+ g(x))x1

minimize f2
DTLZ1(x)) xM(1+ g(x))(1- x1)

subject to 0e xie 1 for i) 1, ... , n (1)

where

g(x))∑
i)1

n

(xi - xs)
2 (2)

xM and xS are adjustable parameters of the problem. The
Pareto-optimal solution in the decision space corresponds
to x ) (xS,..., xS)T. xM defines the location of the Pareto-
optimal set in the objective space. The modified DTLZ-2
problem was defined in a similar way

minimize f1
DTLZ2(x)) xM(1+ g(x))cos(x1π ⁄ 2)

minimize f2
DTLZ2(x)) xM(1+ g(x))sin(x1π ⁄ 2)

subject to 0e xie 1, for i) 1, ... , n (3)

where g(x) is the function given in eq 2.
In the objective space, the objective functions lie on a

linear hyper-plane of order 2 in the case of the DTLZ-1
problem, (f1 + f2) ) xM, or on a spherical hyper-surface of
order 2 in the case of the DTLZ-2 problem, (f1 + f2)2 ) xM.
By adjustment of the xM values it is possible to combine the
linear and the spherical Pareto-optimal front to create a new
problem, where the optimal solution is a combination of
multiple problems.

In combinatorial chemistry often one goal is the search
for new and improved catalysts formulations. Typically this
problem consists of two parts, which are not necessarily
pursued separately: first, the combinatorial problem to find
the best combination of elements in a catalyst and second,
the continuous part, where for a certain combination the best
composition has to be found. In the case of the theoretical
test problem, the combinatorial part of the problem was
implemented as different combinations of the continuous test
problems (DTLZ-1, DTLZ-2), of the absolute location of
the global Pareto-optimal front xM, and of the xS values
corresponding to the concentrations of the elements in the
catalyst. The xM value represents the optimal activity of an
element. A small xM value for a certain element would
describe its single activity without other elements. Interac-
tions were simulated by adding a small value ∆xM to the xM

value to influence the activities. The influence of support or
promoter elements can also be simulated in this way.
Assuming a linear relationship, the resulting location of the
global Pareto-optimal front xM

/ of a combination of n elements
was calculated using the following equation

xM
/ ) 1

n∑
n

xM +∑ ∆xM (4)

xM can be chosen arbitrary in the range from 0 to 1. ∆xM

can be positive or negative and should be small in compari-
son to xM, which is to be minimized just like the fitness
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functions. The values chosen for the theoretical problem in
this work are given in table 1. For the resulting combination
of elements, xM

/ was calculated according to eq 4 using the
values given in Table 1. DTLZ-1 or DTLZ-2 was chosen
depending on the incidences each problem occurred in the
resulting combination. If the incidences of DTLZ-1 and
DTLZ-2 were equal, DTLZ-1 was chosen, otherwise the
problem with the highest number of incidences was chosen.
To make the problem more realistic, the optimal solutions
xS
/ of the continuous part of the problem in the decision space

can be defined as functions of xM
/ . xS

/ was set equal to xM
/ .

The global Pareto-optimal front was a combination of a
Pareto-optimal front from the DTLZ-1 and DTLZ-2 problem.
More precisely, from the values in Table 1, the best
combinations were Al-Cu-Co-La-Sm-K-Sr with xM1

/

) 0.2875 (DTLZ-2, with support) and Al-Cu-K-Sr
(DTLZ-1, with support) with xM2

/ ) 0.35. Because of the
different shapes of the Pareto fronts, a linear DTLZ-1 Pareto
front with a higher xM can still be better than a DTLZ-2
Pareto front with a lower xM. In Figure 2, the Pareto-optimal
fronts of DTLZ-1 and DTLZ-2 with xM ) 0.5 and of the
theoretical test problem with xM(DTLZ-1) ) 0.35 and
xM(DTLZ-2) ) 0.2875 are shown. The combined DTLZ-1
and DTLZ-2 front clearly show that this approach to
construct new combinatorial problems is possible.

Expressed in more generic terms the test problem imple-
ments the following properties: the combination of a com-
binatorial part composed of discrete and finite objects, that
is, the element combinations of a catalyst, and of a continu-
ous part, that is, the elemental composition. The continuous
part includes the following features: the shape of the problem

is linear or spherical and higher-order shapes can be easily
implemented by changing the problem definitions in eqs 1-3.
In this work the use of linear and spherical continuous shapes
was found to yield in a complexity comparable with the one
from the deNOx problem,22 and therefore, no higher-order
or periodic functions were used. Examples of more complex
functions can be found in the report of Deb et al.34 The
dimensionality of the continuous part, which represents the
number of element compositions n, can be set equal to
the number of elements in a catalyst. In the case of the
combinatorial part, the most important features are: each
combination defines exactly one continuous local Pareto-
optimal front of linear or spherical shape. The global Pareto-
optimal front is a combination of several element combina-
tions, and the relationship between the elements is linear as
defined by eq 4. Here again higher-order interactions are
possible. The resulting test problem therefore consists of
many locally optimal solutions and one global Pareto-optimal
front of varying shape composed of several element com-
binations, and is thus generating a problem with properties
similar to combinatorial library design.

2.4. Experimental Test Problem. We were also interested
in studying the influence of different encoding strategies for
a real problem. Thus, experimental data obtained in our
previous work22 was used to build a predictive model for
validation of the results of the theoretical test problem on
an experimental response surface. The modeling was done
using the R programming language and crosschecked with
Statistica. Several generalized regression models were tested
and multivariate adaptive regression splines (MARS)35 were
found to be simple with similar performance compared to
artificial neural networks. Each objective function was treated
separately. The best results were obtained considering an
order of element interactions of 2. Two hundred basis
functions were first tested and afterward reduced by pruning
to the most significant basis functions. In Figure 3, the
predicted values for the objective function f1 are plotted as
a function of the observed values. In the Supporting
Information, in addition, the predicted values for f2 can be
found. The adjusted R2 coefficient of the regression models
are 0.862 and 0.631, and the generalized cross-validation
(GCV) errors are 0.00136 and 0.00363 for the objective
functions f1 and f2, respectively. One should note that less

Table 1. Parameters of the Theoretical Test Problem

type element xM ∆xM problem

main component Cu 0.50 -0.10 DTLZ-1
main component Ni 0.60 0.10 DTLZ-1
main component Co 0.60 -0.05 DTLZ-2
main component Fe 0.50 0.10 DTLZ-1
main component Mn 0.55 0.10 DTLZ-1
main component La 0.60 -0.05 DTLZ-2
main component Ce 0.70 0.00 DTLZ-2
main component Sm 0.65 -0.05 DTLZ-2
promoter K -0.025
promoter Sr -0.025
with support Al 0.00
without support Al 0.10

Figure 2. Pareto-optimal fronts of the multiobjective DTLZ-1 and
DTLZ-2 problems and of a combination of DTLZ-1 and DTLZ-2
front. The numbers in brackets correspond to the xM value.

Figure 3. Predicted values of the regression model for the objective
function f1 plotted as a function of the observed values.
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data points are located in the region with a low fitness value
corresponding to a high performance because of the opti-
mization by the genetic algorithm, as can be seen in Figure
3. Thus the model is less accurate in predicting the
performance for low fitness values, and a systematic devia-
tion to lower performances was observed in this region.

2.5. Performance Assessment. To compare and quantify
the quality of the optimization results by an evolutionary
algorithm several performance metrics need to be defined.
In this work, some of the metrics were specifically defined
with respect to the theoretical test problem, others were
metrics commonly used to assess the performance of
multiobjective optimizers. Information about the optimization
process can be obtained in principle in any of the three
spaces, that is, individual, decision, or objective space. In
the case of the theoretical test problem, the parameter xM

can be used to assess the performance of the combinatorial
part of the problem in the decision space. As described in
Chapter 2.3, two optimal element combinations xM1

/ and xM2
/

exists. An important performance metric can therefore be

defined as the probability P to find one or both of these
optimal combinations, as each optimization run was repeated
100 times for each algorithm. For instance, if in 50 runs,
the algorithm was able to find both combinations, the
probability P(xM1+2

/ ) would be 50%. The standard deviation
of the probability, corresponding to the error bars in the
Figures 4 and 5, was obtained by performing a 4-fold cross
validation using four different subsets of 25 runs. This
procedure was repeated for each algorithm, that is, NSGA-
II, SPEA2, and IBEA, and the arithmetic mean and the
standard deviation σAlgorithm was calculated. The convergence
of the optimization process toward the Pareto-optimal front
was measured by defining two additional metrics. The first
convergence metric M1 was defined as the arithmetic mean
of the xM values of the solutions of the Pareto-optimal front.
The best value for M1 is not the average of 0.35 and 0.2875
but is nearer to 0.35 because of a nonuniform distribution
of the DTLZ-1 and -2 problems along the combined Pareto-
optimal front as can be seen in Figure 2, where the spherical
part of the Pareto-optimal front is corresponding to the

Figure 4. Probabilities P(xM1+2
/ ) to find both optimal combinations of elements for the theoretical problem for all test cases.

Figure 5. Probabilities P(xM1+2
/ ) to find both optimal combinations of elements for the theoretical problem for the test cases TC-1 and TC-2

as a function of the experimental function evaluations (A) and as a function of the total number of fitness assignments (B).
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DTLZ-2 problem with xM ) 0.2875, and the linear part is
corresponding to the DTLZ-1 problem with xM ) 0.35. The
best value found so far for M1 after 50 generations was 0.33.
The second convergence metric M2 was defined as the
arithmetic mean of the objective values f1 and f2 of the
solutions of the Pareto-optimal front. The difference of M1

and M2 is an indication of the convergence state of the
algorithm to a global or local Pareto-optimal front because
M1 defines the location of the Pareto-optimal front and M2

defines the current state of the search. A local Pareto-optimal
front is therefore reached in the case of M1 > 0.33 ( 0.01
and M2 - M1 e 0.01. It should be noted that the use of the
arithmetic mean to calculate M1 and M2 results in a small
error because of the nonuniform distribution of the problems
along the Pareto-optimal front. However, the error is the same
for both metrics and therefore does not change the informa-
tion about the convergence state.

In addition, two general performance metrics were used
to assess the performance to converge toward an arbitrary
Pareto-optimal front and to keep the solutions along this front
as diverse as possible. The so-called additive ε-indicator, Iε+,
and the hyperspace indicator IH were recently developed by
Zitzler and Künzli26 as flexible measures to assess conver-
gence and diversity simultaneously. In the case of a
minimization problem, the indicators are also to be mini-
mized. Expressed in generic terms, the ε-indicator measures
the scalar distance between two solution sets, that is, the
factor by which a solution set is worse than another solution
set. The hyperspace indicator measures the volume of the
objective space dominated by a solution set. The hyperspace
indicator especially has advantages over the epsilon indicator
for problems with more than two objectives because it
captures the change in volume in contrast to the change in
distance. An exact definition of both indicators can be found
in the original work. In the Supporting Information in Figure
S1, the indicator values of three Pareto-optimal fronts are
shown to get an idea of the overall sensitivity of these metrics
on the convergence and diversity. In this work, these general
metrics were used to assess the performance of the optimiza-
tion of the theoretical problem and of the experimental
response surface, that is, the deNOx problem.

3. Test Cases

3.1. Definition of the Decision Space and of the Opti-
mization Problem. A problem typical in combinatorial
materials chemistry was chosen as benchmark problem for
this study. The so-called deNOx problem consists of finding
the best combination and composition of noble metal free
elements in a catalyst active at low temperature in the
selective catalytic reduction of NO with C3H6. It is composed
of 11 elements in different combinations and varying
concentrations that can be classified into three groups: (1)
elements acting as support, (2) the main elements with likely
a major contribution to the catalytic reactivity of the catalyst,
and (3) elements acting as promoter. Another commonly used
group of elements are noble metal elements, which can be
treated as elements belonging to group 2 or 3. The incor-
poration of synthesis conditions is possible in the same way.
In our previous work,22 Al was chosen as the element for

the support; Cu, Ni, Co, Fe, Mn, La, Ce, and Sm were chosen
as the main elements, and K and Sr were chosen as the
promoters. Synthesis conditions were not varied. In this work,
we will restrict ourselves to the treatment of this system.
Without any boundary conditions, the problem is 11-
dimensional. Assuming 100 concentration steps for each
element, theoretically, 1022 possible combinations exist. In
material science it is impossible to synthesize and test such
a number of combinations in a reasonable time.

To reduce the decision space, in our previous work,22 we
applied several constraints mostly by incorporation of
chemical knowledge to the problem definition. For instance,
in the majority of the cases, it is from the chemical point of
view not reasonable to screen catalysts containing all
elements at the same time. Also elements acting as support
or as promoter should be treated in a different manner than
elements belonging to group (2). Two systems with different
step sizes and concentrations ranges, denoted as system with
and without support, were treated separately and the fol-
lowing boundary conditions (denoted as constraint C.i) were
introduced:

C.1. The maximum number of main elements in a catalyst
was four or fewer.

C.2. For systems with support, the Al concentration had
to be >33.3 and <95.0 mol%. The concentration of
each main element was limited to 35 mol%.

C.3. For systems without support, the maximum allowed
Al concentration in a catalyst was 33.3 mol%, and
the concentration for each main element was
unrestricted.

C.4. The sum of the concentrations of the promoter
elements was limited to 5.0 mol%; a catalyst could
contain both promoter elements.

C.5. The sum of all concentrations equals 100 mol%. For
both systems, Al constituted the remainder

It should be noted that both systems were not really
supported because the synthesis of the catalysts was done
by impregnation.22 However, because of the concentration
boundary conditions (C.2 and C.3), systems which were
denoted as supported generally had a very high Al content.
The Al content was not directly evolved during the search
because it was obtained from the other components (C.5).

3.2. Representation in the Individual or Search Space.
To the best of our knowledge, all the encodings of solid
catalysts in previous studies used a representation by vectors
or strings, with binary, integer, or real-valued elements or
by combination of these elements into a hybrid vector. In
this work, a vector representation was also chosen to encode
the catalysts. The entire vector i consists of three parts:
Vector a encodes special combinatorial features, such as
systems with and without support and promoter existence;
this part can also be used to encode additional synthesis
parameters. The second vector b encodes the presence of
main elements in a catalyst. Finally, vector c encodes the
fraction of each element in the catalyst. Fourteen different
encodings were constructed as test cases (TC-1 to TC-14).
The TCs differ, for instance, in the way the composition of
the catalyst is encoded (binary or real), whether the presence
of elements was encoded specifically in vector b or only
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intrinsically via the composition, in how constraints were
handled, and so on. The ranges of values for the different
TCs were defined as follows

p, q, r ∈ N+

i) (aT, bT, cT)
with

a ∈ Bp, b ∈ Bq, c ∈ Br for TC-1 to TC-4, TC-9, and TC-10

a ∈ Bp, b ∈ Bq, c ∈ Rr for TC-5 to TC-8, TC-11, and TC-12

a ∈ Bp, b) { }, c ∈ Br for TC-13

a ∈ Bp, b) { }, c ∈ Rr for TC-14
B ∈ {0, 1}

In Table 2, all the TCs are listed. According to the vector
definition, the different encodings are denoted as follows:
p{b,f}-q{b,f}-r{b,f}, where p, q, or r are the length of the
corresponding vector, and b or f represent binary or a real
valued vector elements. The number of main elements in a
catalyst was limited to four (constraint C.1) in the case of
the test cases TC-1 to TC-8. In contrast, for cases TC-9 to
TC-14, the number of main elements was unrestricted,
leading to a much larger search and decision space. TC-13
and TC-14 do not encode the element existence (vector b),
the presence or absence of an element is only intrinsically
encoded in the composition vector c. For all test cases, a
value smaller than 0.05 in the case of real valued elements,
or 0, that is, the first step, in the case of bit strings, was
considered to be zero. An element is therefore not present if
the element existence in vector b or the element composition
in vector c is zero or both are zero. The constraints C.2 to
C.5 were satisfied by using a repair algorithm; however, they
were only applied to the test cases with an experimental
response surface as fitness function. The only difference
between the test cases TC-1, TC-2, TC-3, TC-4 on the one
hand and TC-5, TC-6, TC-7, TC-8 on the other hand is the
type of elements chosen for the element composition (vector
c), that is, binary or real. If the entire vector i consists of
different types of elements, the variation operators (recom-
bination and mutation) can not be applied on the whole
vector. This is expressed in Table 2 by “1X+SBX”, which
means that a binary crossover operator was used to recom-
bine the binary part of the vector and the SBX operator for
the real valued part. To be directly able to compare binary
and real valued encodings, the same concept was also applied
to the binary test cases, that is, the variation operators were
applied on vector a + b and on vector c separately. In

addition, data showing the results by applying the genetic
operators to the whole chromosome are summarized in the
Supporting Information in Tables S1-S3. Essentially the
same conclusion can be drawn and therefore we do not
discuss them further.

3.3. Constraint Handling Techniques. Michalewicz et
al.36 investigated several strategies to handle constraints in
the case of numerical optimization problems. Some of the
most popular techniques are (a) methods based on rejection
of unfeasible solutions (death penalty), (b) methods based
on penalty functions, (c) methods based on special repre-
sentations and genetic operators, and (d) methods based on
repair algorithms. In our previous work, we chose option d
as constraint handling technique because the evaluation
system is used at maximal capacity, and the repair of
unfeasible solutions in the deNOx problem is relatively easy.
In this work, options b, c, and d will be investigated and
compared. In a recent paper Holena et al.37 described a way
to satisfy constraints by using a combination of methods c
and d to keep the individuals in the population valid.

The repair algorithms for the combinatorial part (vector
b) and the continuous part (vector c) were defined in the
same way as in our previous work.22 Flowcharts of the
algorithms are listed in the Supporting Information. In brief,
these algorithms work as follows: If the number of elements
is not in the allowed range, select an element randomly and
change its existence to zero. Repeat this step until the number
of elements is valid. In the case of the continuous part, the
repair algorithm works in a similar way. If the total
concentration range is too low or too high, select a random
element and change its concentration by one step to get closer
to the allowed concentration range. Repeat this until the
individual is valid. The penalty function for the combinatorial
part was defined as follows: the xM value of an unfeasible
individual, that is, an individual with more than four main
elements, is penalized by the excess of elements times a
constant factor of 0.2. The incorporation of the constraints
into the representation was achieved in the following way:
the number of combinations of exactly four elements out of
eight is 70, which fits into six bits if undesired combinations,
as for instance combinations containing all three elements
from the lanthanides, are removed. If combinations of one
up to four elements out of eight are considered, the number
of combinations easily fits into eight bits. The corresponding
six-bit and eight-bit look-up tables are listed in the Supporting
Information.

4. Results and Discussion

The results of all test cases for the theoretical test problem
are summarized in Table 3 after 10 and in Table 4 after 50
generations. Typically the number of experiments in experi-
mental optimization is strongly limited because of time, cost,
or other resources, and therefore, the results after 10
generations or 240 function evaluations are important to
understand the influence of the representation on the initial
search phase of the algorithm, which is especially relevant
for experimental optimization. In Figure 4, the probability
to find both solutions is shown as a function of the number
of generations for all test cases. As can be easily seen on

Table 2. Definition and Overview of Test Cases

encoding
constraint
technique recombination mutation

TC-1 3b-8b-16b repair function 1X+1X M
TC-2 3b-8b-16b penalty function 1X+1X M
TC-3 3b-6b-16b 6-bit lookup table 1X+1X M
TC-4 3b-8b-16b 8-bit lookup table 1X+1X M
TC-5 3b-8b-4f repair function 1X+SBX M+PM
TC-6 3b-8b-4f penalty function 1X+SBX M+PM
TC-7 3b-6b-4f 6-bit lookup table 1X+SBX M+PM
TC-8 3b-8b-4f 8-bit lookup table 1X+SBX M+PM
TC-9 3b-8b-32b 1X+1X M
TC-10 3b-8b-32b 8-bit lookup table 1X+1X M
TC-11 3b-8b-8f 1X+SBX M+PM
TC-12 3b-8b-8f 8-bit lookup table 1X+SBX M+PM
TC-13 3b-0-32b 1X+1X M
TC-14 3b-0-8f 1X+SBX M+PM
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the basis of the results in Tables 3 and 4 and in Figure 4A/
B, the highest probability to find both solutions after 10
generations was observed for test case TC-1. In nearly 50%
of the cases, this representation was able to find both catalyst
combinations. TC-2, which uses a penalty based constraint
handling technique and the corresponding real valued
representations TC-5 and TC-6 were in roughly 30% of the
cases able to find both solutions. For all other test cases, the
probability decreased to 20% or even less. This observation
confirms the assumption that the representation strongly
influences the search. The test cases TC-3 and TC-7, which
are encoded with two bits less than the other encodings, were
performing significantly worse. Thus it is obvious that
representations with fewer vector elements are not always
better than representations with more elements. The cor-
respondence between the individual and the decision space
is bijective in the case of TC-3 and TC-7 (3b-6b-16b and
3b-6b-4f), that is, each individual maps exactly to one
composition. A so-called one-to-one correspondence between
the two spaces exists. In contrast, a surjective correspondence
exists for the other test cases (3b-8b-16b or 3b-8b-4f) because
an element can be omitted by setting bi or the element
composition in vector c to zero or both, and in the case of
less than four elements, vector c can be partially modified
without changing the catalyst composition in the decision
space for the test cases TC-1 to TC-8. It is favorable to allow
various pathways in the individual space to reach a certain
solution in the decision space. In the case of a 3b-8b-16b or
a 3b-8b-4f vector representation, the algorithm is able to
evolve a certain combination of elements by evolution of
vector b, the combinatorial part, or vector c, the continuous

part, or both. In addition, the lower performance of the test
cases which intrinsically handle the constraints by using a
look up table can be related to the improper variation
operators, as will be discussed later.

Also on the basis of the convergence metrics M1 and M2

or on the ε- and hyperspace indicator in Table 3 or 4, it can
be seen that the best performance to converge efficiently
toward the global Pareto-optimal set and to keep this set as
diverse as possible was only achieved by TC-1 and TC-2.
They were able after 50 generations to reach M1 ) 0.33
(Table 4) and also have low ε- and hyperspace indicator
values, an evidence for highly diverse Pareto-optimal fronts.
The best diversity after 50 generations was obtained by TC-
2. In contrast, independent of the multiobjective algorithm,
stronger clustering was observed in all cases for the real
valued representations compared to the binary representa-
tions. As can be seen in Tables 3 and 4, the best real valued
representations TC-5 and TC-6 have rather large values for
the ε- and hyperspace indicator, which is because of the
cluster formation along the Pareto-optimal front. In the case
of a binary representation the finite step size keeps the
solutions in the decision space at a minimum distance and
helps to reduce cluster formation in the objective space. In
addition, the individual space is smaller in the case of the
binary representation, where the step size for each concentra-
tion can be adjusted to a reasonable value. For instance, as
already mentioned in our previous work, in the case of
experimental optimization, the step size should be signifi-
cantly larger than the experimental error of the system.
Nevertheless, the choice between real valued representations
and binary representations is difficult because the perfor-

Table 3. Results of the Optimization of the Theoretical Test Function after 10 Generations

P(xM1
/ ) (%) P(xM2

/ ) (%) P(xM12
/ ) (%) σAlgorithm (%) M1 (-) M2 (-) M2 - M1 (-) Iε+ (-) IΗ (-)

TC-1 52 94 48 7.2 0.35 ( 0.02 0.38 ( 0.02 0.03 0.08 ( 0.02 0.04 ( 0.02
TC-2 42 91 38 10.3 0.35 ( 0.02 0.38 ( 0.02 0.03 0.07 ( 0.02 0.03 ( 0.01
TC-3 38 65 19 21.7 0.37 ( 0.03 0.39 ( 0.03 0.03 0.07 ( 0.02 0.03 ( 0.02
TC-4 21 88 18 22.2 0.36 ( 0.02 0.39 ( 0.02 0.03 0.09 ( 0.03 0.05 ( 0.02
TC-5 38 99 37 6.2 0.36 ( 0.03 0.41 ( 0.04 0.05 0.12 ( 0.04 0.08 ( 0.03
TC-6 28 98 28 5.5 0.36 ( 0.02 0.41 ( 0.03 0.05 0.12 ( 0.03 0.09 ( 0.03
TC-7 18 84 12 14.4 0.36 ( 0.02 0.38 ( 0.02 0.02 0.12 ( 0.03 0.07 ( 0.02
TC-8 21 89 18 16.7 0.37 ( 0.03 0.43 ( 0.04 0.06 0.10 ( 0.02 0.05 ( 0.02
TC-9s 14 97 13 17.9 0.35 ( 0.03 0.36 ( 0.03 0.01 0.08 ( 0.02 0.03 ( 0.01
TC-10 11 79 8 12.5 0.37 ( 0.03 0.44 ( 0.04 0.07 0.10 ( 0.03 0.06 ( 0.02
TC-11 15 98 15 7.9 0.38 ( 0.03 0.39 ( 0.04 0.01 0.08 ( 0.03 0.04 ( 0.02
TC-12 10 89 10 31.6 0.37 ( 0.02 0.51 ( 0.05 0.14 0.11 ( 0.03 0.07 ( 0.02
TC-13 15 3 0 173.2 0.45 ( 0.05 0.52 ( 0.05 0.08 0.11 ( 0.02 0.06 ( 0.02
TC-14 7 2 1 173.2 0.46 ( 0.04 0.61 ( 0.08 0.16 0.17 ( 0.05 0.12 ( 0.04

Table 4. Results of the Optimization of the Theoretical Test Function after 50 Generations

P(xM1
/ ) (%) P(xM2

/ ) (%) P(xM12
/ ) (%) σAlgorithm (%) M1 (-) M2 (-) M2 - M1 (-) Iε+ (-) IΗ (-)

TC-1 97 100 97 1.6 0.33 ( 0.01 0.34 ( 0.01 0.01 0.07 ( 0.04 0.01 ( 0.01
TC-2 94 100 94 0.6 0.33 ( 0.01 0.34 ( 0.01 0.01 0.02 ( 0.01 0.01 ( 0.01
TC-3 57 93 50 14.8 0.34 ( 0.01 0.35 ( 0.01 0.01 0.07 ( 0.03 0.02 ( 0.02
TC-4 41 100 41 28.0 0.34 ( 0.01 0.35 ( 0.00 0.00 0.07 ( 0.02 0.02 ( 0.01
TC-5 88 100 88 4.5 0.34 ( 0.02 0.37 ( 0.03 0.03 0.09 ( 0.06 0.04 ( 0.04
TC-6 83 100 83 5.9 0.34 ( 0.01 0.37 ( 0.02 0.03 0.09 ( 0.05 0.04 ( 0.03
TC-7 33 95 30 15.3 0.34 ( 0.01 0.35 ( 0.01 0.01 0.09 ( 0.03 0.04 ( 0.02
TC-8 65 100 64 19.3 0.34 ( 0.01 0.37 ( 0.02 0.03 0.05 ( 0.02 0.02 ( 0.01
TC-9 31 99 31 10.5 0.34 ( 0.03 0.34 ( 0.03 0.00 0.10 ( 0.03 0.04 ( 0.02
TC-10 21 99 20 7.5 0.35 ( 0.01 0.35 ( 0.01 0.00 0.08 ( 0.05 0.03 ( 0.04
TC-11 43 100 43 13.1 0.36 ( 0.02 0.36 ( 0.03 0.01 0.09 ( 0.07 0.04 ( 0.03
TC-12 42 99 42 2.8 0.34 ( 0.01 0.41 ( 0.04 0.07 0.08 ( 0.03 0.04 ( 0.02
TC-13 89 50 50 13.7 0.34 ( 0.03 0.37 ( 0.03 0.03 0.34 ( 0.03 0.23 ( 0.04
TC-14 16 5 2 50.0 0.42 ( 0.05 0.48 ( 0.05 0.06 0.17 ( 0.05 0.15 ( 0.05
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mance is in both cases very good. Adaptation by building
blocks, as described by the traditional schema theorem,38 is
only valid for binary representations in combination with
the typical binary crossover operators. Also the binary
codification offers the maximum number of schemata per
bit of information of any representation.1 However, when
applied to high-precision numerical problems, a real valued
encoding in combination with well-designed genetic variation
operators can be favorable. If only one objective is to be
optimized, the clustering is less problematic. Thus, if a local
optimization, that is, an optimization with a small step size
is desired in addition to a good global optimization perfor-
mance a real valued representation might be preferable.
However, in most of the cases, genetics algorithms for
combinatorial library design are used for the first screening
of large search spaces, and only a global optimization is
intended; in addition a local optimization can be realized by
further optimization using a local optimization technique.

The standard deviations σAlgorithm of the multiobjective
algorithms, that is, IBEA, SPEA2, and NSGA-II, to find with
the same probability both element combinations are also
given in Tables 3 and 4. A small deviation signifies that the
performance is not significantly influenced by the algorithm.
The test cases TC-1/TC-2 and TC-5/TC-6, which do not
directly incorporate the constraints in the representation, were
almost not influenced by the algorithm. In conclusion, the
overall best performance was obtained by using a binary
representation with a surjective correspondence between
individual and decision space, which uses either repair
algorithms or penalty functions as constraint handling
heuristics. The use of special representations to satisfy the
constraints did not lead to an improved performance. This
was because of improper variation operators, which were
not able to create new individuals with properties common
to their parents. It is therefore very important only to use
special representations if the variation operators are ad-
equately adapted. This was not the case for TC-3/TC-4 and
TC-7/TC-8, which satisfy the constraints by using a lookup
table. Infrequently representations using integer valued
element were used to represent solid catalysts or additional
synthesis parameters.39 The use of integer representations
has the drawback that problem specific variation operators
have to be defined, and as mentioned above, special operators
have to be very carefully designed to produce the desired
effects. In general, the generated effects are not the same as
in the case of a binary representation. In most of the cases,
an integer-valued representation can be easily converted into
a binary representation, which simplifies the discovery of
good schemata, as more schemata are available. Hence, it is
usually more convenient to use a binary instead of an integer
representation.

In Figure 5, the probabilities to find both optimal combi-
nations for the test cases TC-1 and TC-2 are plotted as a
function of the experimental evaluations and as a function
of the total number of fitness assignments. TC-1 uses a repair
function; therefore, all individuals are valid and the number
of function evaluations is equal to the number of experi-
mental evaluations. In contrast, TC-2 uses a penalty function,
and the invalid individuals are not experimentally evaluated.

Especially in the initial phase up to 50% of the individuals
were not valid, as shown in Figure S5 in the Supporting
Information. In Figure 5, this can be seen because TC-2
performs better than TC-1 in terms of experimental functions
evaluations up to 400 evaluations, whereas it performs worse
in terms of the total number of fitness assignments. The
reason for the lower performance of TC-1 compared to TC-2
in terms of experimental functions evaluations is the fol-
lowing: if a repair function is used, all individuals in a
population are valid, and the information content per
generation is higher than without a repair function because
more individuals are tested. However, the repair operator
can be considered as a third stochastic variation operator,
which may destroy knowledge gained throughout the opti-
mization process. Thus the information content per generation
is not optimal. The penalty function does not destroy any
knowledge, and the algorithm is able to proceed the search
without any disruption. The information content in terms of
experimentally evaluated individuals is optimal because each
valid individual was created by the algorithm itself and not
by the repair function. For practical purposes, the choice of
the constraint handling technique depends on the testing
equipment in the laboratory. If a parallel system is used and
the time to test a full population is nearly the same compared
to the time needed to test only the valid individuals, a repair
algorithm would be the better choice. In contrast, if the
individuals have to be tested in a sequential way, a penalty
heuristic is preferable.

In Figure 4C/D and Tables 3 and 4, the results of the test
cases TC-9 to TC-14 are shown. The maximum allowed
number of main elements was not limited for these test cases.
It can be easily seen that the mush larger search space directly
led to a significant inferior overall performance. The results
are consistent with the findings discussed previously: the test
cases which encode the combinations in a lookup table were
performing worse than the ones with a representation
compatible to the recombination operator. Real valued
representations have a higher trend to form clusters. TC-13
and TC-14 do not encode the existence of an element in
addition to its chemical composition. An interesting new
conclusion can be drawn by comparing these two test cases
to the others. Up to the 10th generation, these test cases were
not able to find both optimal element combinations. The
whole optimization process seems to be delayed. Interest-
ingly, after this delay, TC-13 was able to find the optimal
combinations quite well. The optimal combination with four
main elements (xM1

/ ) was found much easier compared to
the one with only one element (xM2

/ ). This is because the
search only occurs through evolution of the element com-
positions, and in such a case, it is easier for the algorithm to
find the combination with four elements. Because of the
much larger search space for the real-valued encoding TC-
14 compared to the binary TC-13, the algorithm was nearly
unable to find both element combinations in a reasonable
time. This confirms the importance of encoding the element
existence, especially for real-valued representations. To omit
the element existence, in addition to the composition, only
makes sense in cases where the search is intended to be
focused on a fixed number of elements present in the catalyst.
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In most practical problems in combinatorial chemistry, this
is not the case, and to achieve a high initial convergence
rate, it is mandatory to encode the element existence in
addition to the composition. Watanabe et al.40 used a genetic
algorithm to optimize Cu oxide catalysts for the methanol
synthesis. The decision space consisted in combinations of
five elements. The elemental composition was represented
by a binary vector of 36 bits (6 bits for each element) without
additionally encoding the element’s existence. The optimum
catalyst that was found consisted of four elements, and
therefore, the genetic algorithm had to dismiss the superflu-
ous element by changing its composition until zero. In the
majority of the cases, this requires more iteration steps than
the rejection of an element by changing the bit corresponding
to its existence. In the case of the study by Watanabe et al.,40

the missing element existence did not had a significant impact
on the performance because the optimum combination
consisted of nearly as many elements as the starting
combination, and a binary representation with only few steps
for each element was used. In contrast, a significant impact
would be expected if the element composition is represented
by a real valued vector or by a binary vector with many bits
(>12 bits for each element) or if the optimum combination
consists of much less elements than the starting combination.
Wolf et al.14 and other groups41 recognized this advantage
and encoded the element existence in addition to the real
valued representation of the element composition.

In the following, the results of investigating the theoretical
problem will be validated on the basis of the experimental
response surface. The system to optimize was identical to
the system we investigated experimentally in our previous
work.22 All constraints were applied, and we restricted
ourselves to systems with up to four main elements. The
discrete concentration steps in mol % in the case of a binary
encoding can be found in our previous work or in the
Supporting Information of this contribution. In Figure 6,
boxplots of the ε- and the hyperspace indicator for all three
algorithms after 5, 10, and 50 generations are shown for the

binary test cases TC-1, TC-3, and TC-4 and for the real
valued test cases TC-5, TC-7, and TC-8. It is reasonable to
compare the results in terms of the median and the worst
performing solution and not in terms of the best solution.
After 5 and 10 generations, the test case TC-1 was the best
performing binary representation, as expected on the basis
of the results of the theoretical test function. After 50
generations, the trend was not clear anymore, and the median
values of TC-1, TC-3, and TC-4 were almost the same.
However, the worst solution found by TC-1 was better than
the one found by TC-3 and TC-4. The direct comparison
between the binary and the real valued test cases shows that
the real valued cases were generally performing worse. The
standard deviations were higher, which is an indication for
a less stable optimization. The best real valued test case was
TC-5. By comparison of the best performing binary and real
valued test cases TC-1 and TC-5, it can be seen that the
median value of TC-5 was sometimes slightly better than
the one for TC-1. The worst performing solution of the real
valued representation was always inferior compared the
solution found by the binary encoding. After 50 generations,
it can be seen that the distributions of the solutions found
by the binary test cases were much more narrow in
comparison to the distributions of the real valued test cases.
The explanation for the inferior performance of the real
valued test cases was already given on the basis of the
theoretical test functions and is also valid for the experimental
optimization problem. In conclusion, the combinatorial
theoretical test problem presented in this work allows
understanding the optimization process of similar problems
and can be used as theoretical benchmark problem for the
development of genetic algorithms for combinatorial library
design of solid catalysts.

In Figure 7, a representative Pareto-optimal front obtained
by optimization of the experimental response surface and
the SPEA-2 Pareto-optimal front found during the experi-
mental optimization of the same system in our previous
work22 are compared. It can be seen that the optimization

Figure 6. Results of the optimization of the experimental response surface after 5, 10, and 50 generations for several binary and real valued
test cases. The box represents the lower and the upper quartile and the median. The whiskers represent the standard deviation. The minimum
and maximum values are represented by a bar, the 1% and 99% marks by a cross, and the mean value by a square.
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of the experimental response surface led to a very similar
Pareto-optimal front. Both fronts were composed by Cu-,
Ni-, Co-, and Al-based catalysts in varying compositions.
The shapes of the Pareto-optimal fronts are comparable.
Interestingly better solutions for f1 were obtained during the
experimental optimization. This is because of an erroneous
modeling of the solutions for low fitness values of f1 as
already stated in section 2.4, and therefore, the regression
model was not able to properly reproduce the Pareto front
in this region. The predicted values for f1 were larger than
the observed. In the case of the second objective function f2

or the lower right region of the Pareto front, the predicted
values were smaller than the observed, which led to too low
values in this region. This is also because of the inaccuracy
of the regression model. However, we are confident, that
the experimental response surface leads to a similar optimi-
zation problem as the experimental problem and can be used
to validate the results of the theoretical test problem.

5. Conclusions

Genetic algorithms are highly valuable tools for combi-
natorial library design in high dimensional chemical spaces.
Because of their flexibility, the implementation and adapta-
tion on the specific problem can be very challenging. In this
contribution, we systematically investigated the influence of
the representation on the performance of the optimization
in the case of a typical problem in combinatorial material
science. A new theoretical test problem was defined and
optimized using various types of representations. The results
clearly indicate that the performance strongly depends on
the representation. Several multiobjective algorithms were
used to optimize the system, and no significant dependence
of the performance on the optimization algorithm was
observed for well defined representations. Variation operators
have to be adapted to the representation to produce meaning-
ful offsprings. Improper recombination operators lead to a
significantly reduced performance. A surjective correspon-
dence between individual and decision space was found to
be favorable, in contrast to a strictly one-to-one cor-
respondence, which narrows the possibilities to evolve

through different pathways. In the case of experimental
optimization, where the number of experiments is strongly
limited, especially a good initial performance is required.
This can only be achieved by encoding the element combi-
nations in addition to their compositions. A binary encoding
of the element compositions has several advantages compared
to real valued encodings: The search space can be tailored
by choosing a step size for each concentration to a reasonable
value, which should be significantly larger than the experi-
mental error of the system. In addition, because of the
discrete step size and the reduced dimensionality of the
search space, the individuals are kept at a minimum distance,
which significantly reduces the tendency to form clusters.
Finally, we observed that a repair heuristic to satisfy the
constraints is a very good choice if the time to experimentally
test one generation is not significantly less than the time
needed to test the valid individuals in a consecutive way. If
one can only test in a sequential manner and thus would
loose substantial amounts of time in testing invalid individu-
als, a penalty function would be the better choice.

Supporting Information Available. Figures showing the
predicted values of the regression model for f2, the repair
algorithms for vectors b and c, and the number of times the
repair algorithms were applied, additional test cases, and
tables with the 6-bit and 8-bit lookup tables and the discrete
encodings of the elements concentrations. This material is
available free of charge via the Internet at http://pubs.acs.org.
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